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Abstract

Modelling and visualisation methods working directly with
point-sampled geometry have developed into attractive alternatives
to more traditional mesh-based surface processing. In this paper,
we consider a vital step in any point-based surface processing
pipeline, point cloud simplification. Building upon the intrinsic
point cloud simplification idea put forward in [14], we obtain a
simplification algorithm allowing for intuitive density control and
satisfying a set of important requirements unsupported by existing
simplification techniques. The algorithm operates efficiently and
gives a point set density guarantee. It supports both sub- and
resampling of the input point set and allows for uniform and
user-controlled feature-sensitive simplification. It can further
deal with non-uniformly distributed point sets and point-sampled
geometry featuring illegitimate holes of simple complexity. The
algorithm is inherently progressive and supports the generation of
multiresolution representations in the form of levels of detail. We
are primarily concerned with describing the conceptual framework
of our intrinsic approach and show its viability by giving a number
of application examples using massive data sets.

Keywords: Point cloud simplification, Point-sampled geome-
try processing, Fast Marching level set methods

1 Introduction

Modern 3D data acquisition devices produce point sets of enor-
mous density due to submillimeter measurement precision. Sur-
face reconstruction algorithms either fail to cope with the inher-
ent redundancy of these point sets or produce highly dense surface
meshes. To facilitate meaningful further mesh-based processing,
these meshes require mesh simplification algorithms which are fre-
quently as time and memory demanding as the preceding surface
reconstruction step. By simplifying the point cloud first and, if re-
quired, generating the surface mesh from the simplified point set,
the surface reconstruction problem is accelerated significantly and
the mesh simplification step is avoided altogether. Alternatively,
surface reconstruction and thus mesh-based processing and its in-
herent maintenance overhead may be completely replaced by more
efficient point-based modelling and visualisation algorithms at little
or no loss in quality. In either case, the simplification of the input
point set represents a vital first processing step.

In [14], we suggest to approach the problem of point cloud sim-
plification intrinsically using geodesic Voronoi diagrams [15] and
recent advances in Fast Marching methods for point clouds [12]. In
this paper, we substantially extend this idea thereby obtaining a sim-
plification method satisfying a set of important requirements unsup-
ported by existing simplification techniques. We are primarily con-
cerned with discussing the conceptual framework of the extended
algorithm. We begin by formally stating the problem, then we sur-
vey related work and outline our contribution. Section 2 presents
our farthest point sampling technique for point-sampled geometry
which is at the heart of the simplification algorithm discussed in
Section 3. Section 4 indicates the viability of our approach by pro-
viding application examples for a number of massive data sets and

a first set of experimental results. Section 5 concludes the paper.

1.1 Problem statement

Given a set of samples PN1 = {p1, p2, . . . , pN1} acquired from a
smooth, compact two-manifold surface embedded in R

3, simplify
PN1 to a point set PN2 of target model size N2 < N1 subject to user-
controlled refinement condition ρ > 0. The input point set does
not have to be uniformly distributed. Furthermore, any noise is not
required to be smoothed out in a pre-processing step.

Our aim was to develop a dedicated point cloud simplification
algorithm allowing for simple density control whilst satisfying a
set of important requirements. These are a point set density guar-
antee to support meaningful further processing, memory and exe-
cution efficiency and support for both uniform and user-designated
feature-sensitive simplification. The algorithm should not be re-
stricted to the generation of subsets of the input point cloud but
support its resampling as well. Meeting this requirement would
also help to satisfy the final requirement of being able to deal mean-
ingfully with non-uniformly distributed input point sets and illegit-
imate holes in the form of undersampled regions.

1.2 Related Work

For the sake of brevity, we focus on dedicated point cloud simplifi-
cation algorithms, with an eye to how they perform against the set
of requirements listed in the previous section.

Dey et al. [6] were among the first to present a dedicated point
cloud simplification algorithm which exploits the particular struc-
ture of 3D Voronoi cells of a densely distributed input point set both
to detect oversampled regions and to determine candidate points for
removal. Subsequent point decimation observes a user-controlled
density condition. Due to the use of the medial axis-related lo-
cal feature size concept [2], their method is inherently sensitive to
changes in local curvature estimates. The algorithm does not sup-
port adaptive decimation driven by changes in a measure other than
or in addition to local curvature. It is restricted to the generation of
a subset of the input point set and cannot handle non-uniformly dis-
tributed point clouds or point sets featuring (illegitimate) holes. It
requires the computation and maintenance of 3D Voronoi diagrams
and therefore tends to be computationally and memory demanding.

Linsen’s [11] simplification method for point sets associates each
input point with an information content measure and iteratively
deletes points with lowest entropy. The information content mea-
sure represents a weighted sum of local curvature, non-uniformity
and colour variation computed in the candidate point’s k nearest
neighbourhood enhanced by a maximum angle criterion. The sim-
plification algorithm is simple and effective but does not give any
density guarantee and is limited to the generation of point cloud
subsets. Input clouds may therefore be simplified to prohibitively
unevenly distributed point sets and non-uniformly distributed input
point sets will necessarily result in non-uniformly distributed out-
put point sets. The resampling of the input cloud, which may be
necessary in either case to support any effective further processing,
is not addressed in the paper.
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Alexa et al. [1] “Moving Least Squares” (MLS) technique lo-
cally approximates a smooth two-dimensional manifold surface by
bivariate polynomials fitted with the help of weighted least squares.
As part of their point decimation scheme, they judge each input
point’s importance by its distance from its projection onto the MLS
surface computed from all input points other than the point under
consideration. Those points exhibiting the smallest distance are
considered redundant and are removed iteratively. Flexible feature-
sensitive simplification is not supported. Similar to the techniques
discussed above, this method produces a subset of the input point
cloud and may require resampling to avoid any excessive non-
uniformity in the simplified point set.

In Moenning and Dodgson [14], we present an intrinsic coarse-
to-fine point cloud simplification algorithm supporting execution
efficient uniform and feature-sensitive simplification driven by any
combination of point weights reflecting changes in local curvature,
colour, etc. The progressive nature of its uniform version inherently
supports the generation of multiresolution representations of the in-
put point set in the form of levels of detail. The method cannot deal
with non-uniformly distributed input sets, does not give any density
guarantee and does not allow for the generation of simplified point
sets other than true subsets of the input data.

Pauly et al. [16] adapt various widely used mesh simplification
techniques to the point cloud simplification scenario. Their itera-
tive simplification method is reported to produce the best results in
terms of average geometric accuracy but does not allow for simple
control of point set density and requires relatively expensive pre-
computations. Particle simulation is found to represent the next-
best method in terms of approximation accuracy and the best choice
in terms of point set density control but is generally computation-
ally demanding. Uniform incremental clustering is computationally
efficient but is reported to produce the highest approximation error
and is not naturally extensible to simplification sensitive to mea-
sures other than changes in local curvature. Similarly, hierarchical
clustering is memory and execution efficient but even in its adaptive
version yields point sets of approximation error only slightly lower
than that introduced by the method performing poorest on this crite-
rion, uniform incremental clustering. The methods support surface
resampling but do not come with any density guarantee.

In summary, while all of the simplification algorithms discussed
above meet a subset of the requirements listed in 1.1, none satisfies
them all. The following section summarises the contribution of our
approach towards providing such an algorithm.

1.3 Our contribution

By building upon the intrinsic approach towards point cloud sim-
plification put forward in [14], we obtain an enhanced algorithm
allowing for efficient coarse-to-fine simplification with an easy to
control, guaranteed density. The algorithm supports the uniform
and adaptive simplification of uniformly distributed point sets and
point clouds featuring non-excessive non-uniformity and/or illegit-
imate holes of simple complexity in the form of undersampled re-
gions. Adaptivity is supported in the form of any combination of
(positive) point weights either computed on-the-fly or imported in
the form of pre-computed importance maps. The algorithm can be
used to generate either a subset of the point cloud or a resampled
simplified point set. It inherently supports progressive transmis-
sion, the generation of multiple levels of detail and selective refine-
ment. This algorithm represents the first point cloud simplification
technique combining simple density control with the above set of
desirable features.

The algorithm’s execution and memory efficiency directly results
from its intrinsic nature due to the use of the optimal extended Fast
Marching method for the computation of geodesic distance maps
across point clouds introduced in [12]. We exploit these powerful

techniques for the incremental computation of (discrete) geodesic
Voronoi diagrams. As outlined in the following section, this allows
us to locate both farthest point samples and nearest neighbours effi-
ciently. This is in contrast to the frequent use of computationally
and memory demanding three-dimensional extrinsic (Euclidean)
Voronoi diagrams/Delaunay triangulations for similar purposes [2;
3; 6]. In the following, we discuss the concepts underpinning our
approach in detail.

2 Intrinsic farthest point sampling of point-
sampled geometry

Our simplification algorithm is based on the idea of progressive in-
trinsic farthest point sampling of a surface in point cloud form. The
algorithm exploits the observation that intrinsic farthest point sam-
pling can be shown to be closely related to the incremental com-
putation of a geodesic Voronoi diagram. We therefore begin this
section by briefly reviewing the notion of geodesic Voronoi dia-
grams. This is followed by the discussion of the link between pro-
gressive intrinsic farthest point sampling and incremental geodesic
Voronoi diagram computation. As part of our simplification algo-
rithm, we perform the discretised version of this Voronoi diagram
computation by using the extended Fast Marching concept put for-
ward by [12]. We therefore conclude this section with a brief sum-
mary of this important method.

2.1 Geodesic Voronoi diagrams

Given a finite number n of distinct data sites P := {p1, p2, . . . , pn}
on a smooth, compact manifold M, define the bisector of pi, p j ∈ P,
pi �= p j, as geodesically equidistantial loci with respect to pi, p j

L(pi, p j) = {q ∈ M|dM(pi,q) = dM(p j,q)}, (1)

where dM(p,q) denotes the length of the geodesic from p to q, p,
q ∈M. Let the dominance region of pi, D(pi, p j), denote the region
of M containing pi bounded by L(pi, p j). The Voronoi region of pi
with respect to point set P, V (pi,P), is given by

V (pi,P) =
⋂

p j ∈P,p j �=pi

D(pi, p j) (2)

and consists of all points for which the geodesic distance to pi is
smaller than the geodesic distance to any other p j ∈ P. We de-
fine the bounded Voronoi region, BV (pi,P), as the conjunction of
V (pi,P) with the domain.
The boundary shared by a pair of Voronoi cells is called a Voronoi
edge. Voronoi edges meet at Voronoi vertices. For every Voronoi
vertex v, there exist at least three points in P which are geodesically
equidistant from v. The bounded Voronoi diagram of P, BVD(P),
is given by

BVD(P) =
⋃

pi∈P

∂BV (pi,P) (3)

where ∂BV (pi,P) denotes the boundary of BV (pi,P).
We approximate a geodesic BVD using weighted geodesic dis-

tance maps. The BVD is generated following a expanding waves
view. That is, in analogy to the dropping of pebbles into still wa-
ter, circular fronts move across the surface from the point of im-
pact. The locations where wave fronts meet or leave the domain
define the bounded surface Voronoi diagram of the points of im-
pact. See Figure 1 for a triangular mesh-based example produced
using public domain software [17]. Wave propagation is discretised
and simulated accurately by the Fast Marching level set-based vis-
cosity solution of the Eikonal equation [18]. This way concentric
circles are computed on the surface in the form of discrete geodesic
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Figure 1: Wave propagation for the incremental computation of
geodesic Voronoi diagrams and thus progressive intrinsic (red) far-
thest sample point localisation of 10, 11 and 12 sample sites on a
triangulated surface (from left to right).

offsets and Voronoi edges and vertices are obtained as loci of in-
tersection between geodesic offset curves. The following section
shows the close relationship of this Voronoi diagram concept with
the notion of progressive (intrinsic) farthest point sampling.

2.2 Farthest point sampling

Farthest point sampling was introduced in an image sampling con-
text by Eldar et al. [7] and is based on the intuitively appealing idea
of repeatedly placing the next sample point in the middle of the
least-known area of the sampling domain.

To see the close relationship of the farthest point sampling prin-
ciple with incremental geodesic Voronoi diagram construction, note
that the point farthest away from the current set of sample sites, S,
is represented by the centre of the largest geodesic circle empty
of any site si ∈ S. Due to the propagation of circular fronts from
the si outwards during the computation of their Voronoi regions,
this “largest empty circle” problem is solved by a vertex of the
(bounded) geodesic Voronoi diagram of S, BVD(S) [5]. Using this
close link with Voronoi diagrams, farthest point samples may be
generated progressively by incrementally constructing a geodesic
Voronoi diagram across the sampling domain (Figure 1). Whilst
previous work exploited this link to compute farthest point samples
on triangular and implicit surfaces, we propose its extension to the
point cloud case using the extended Fast Marching method of [12]
discussed next.

2.3 Fast Marching for geodesic distance mapping
across point clouds

In the following, we summarise the extension of the well-known
original Fast Marching level set method [10; 18; 19] to the case
of surfaces in point cloud form introduced in [12]. Our review is
necessarily terse, presenting just the key results. For full details,
see the original paper [12].

Let Pn = {p1, p2, . . . , pn} denote a set of points acquired from a
smooth, compact manifold surface M in m ≥ 3 dimensions. Define
the r-offset Ωr

P as the union of Euclidean balls with radius r centred
at points pi ∈ P

Ωr
Pn

:=
n⋃

i=1

B(pi,r) = {x ∈ R
m : d(pi,x) ≤ r},

for all i and where d(., .) denotes the Euclidean distance func-
tion (Figure 2). To approximate the weighted intrinsic distance
map originating from a source point q ∈ M on M, Mémoli and

Figure 2: Geodesic distance mapping using extended Fast March-
ing for point clouds operates in an offset band consisting of the
union of balls B(pi,r) centred at (black) points pi of the surface M
(left). Only those (blue) grid points falling inside the offset band are
considered during processing. Cross-sectional view of a constant
radius offset band for the Michelangelo Youthful data set (right).

Sapiro [12] suggest to compute the Euclidean distance map in Ωr
Pn

.
That is

|∇MTM(p)| = F(p), (4)

for p ∈ M and with boundary condition TM(q) = 0 is approximated
by

|∇TΩr
Pn

(p)| = F̃(p), (5)

for p ∈ Ωr
Pn

and boundary condition TΩr
Pn

(q) = 0. F̃ represents the
(smooth) extension of the propagation speed F on M into Ωr

Pn
. T (p)

denotes the arrival time at p of the front originating from q and ∇M
and ∇ represent the intrinsic and the Euclidean gradient operator
respectively. The problem of computing an intrinsic distance map
is therefore transformed into the problem of computing an extrinsic
(Euclidean) distance map in the tubular neighbourhood Ωr

Pn
around

the surface, i.e. in an Euclidean manifold with boundary. In [12],
the authors prove uniform probabilistic convergence between these
two distance maps and thus show that the approximation error be-
tween the intrinsic and extrinsic distance maps is of the same theo-
retical order as that of the Fast Marching algorithm for both noise-
free and noisy point clouds (assumming noise to be bounded from
above by r). The Fast Marching method can therefore be used to
approximate the solution to (5) in a computationally optimal man-
ner and without the need for any prior surface reconstruction by
only slightly modifying the original Cartesian Fast Marching tech-
nique to deal with bounded spaces. The relatively straightforward
implementation of this technique consists of, firstly, computing the
offset band Ωr

Pn
, followed by the application of standard Cartesian

Fast Marching restricted to Ωr
Pn

. For more implementational details,
see [12]. Memory efficiency is achieved by only considering those
grid points falling inside the offset band (Figure 2). This impor-
tant technique is utilised in our point cloud simplification algorithm
presented next.

3 Intrinsic point cloud simplification

We first present the point cloud subsampling algorithm extending
the idea in [14], followed by the discussion of its extension to the re-
sampling case. We then relax the assumption of uniformly densely
distributed point clouds and describe our approach towards dealing
with the resulting issues. The section concludes with a simple proof
for the density guarantee given by our simplification algorithm.
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3.1 Intrinsic point cloud subsampling

Our algorithm for the subsampling of uniformly dense input point
clouds is summarised in the following.

The grid points which make up Ωr
Pn

, and those grid points
only, for a fixed r and a given grid resolution are computed
in a one-off pre-processing step. For bounds on r to avoid an
intersecting boundary or an unconnected domain, see Mémoli and
Sapiro [12]. During the pre-processing step, the input point set is
bucketed in this offset grid and an initial sample point is selected
randomly. The actual subsampling algorithm adds one new point
to the set S of sample points at each step and proceeds as follows.

1. Initialisation: The algorithm starts with reading in the offset
grid data and initial sample point, s1 ∈ M. The grid points
enclosing s1 are initialised with their analytic distance from s1. We
generate a second, s2, and third, s3, starting sample by repeatedly
selecting the point farthest away in the geodesic distance map
approximations of s1 and s1, s2 respectively. Once |S| ≥ 3, the
algorithm constructs the initial discrete geodesic bounded Voronoi
diagram, BVD(S), by simultaneously propagating fronts from
the initial sample points outwards. The vertices of the geodesic
BVD(S) are given by those input points closest to grid points
entered by three or more propagation waves (or two for points on
the domain boundary) and are therefore obtained as a by-product
of the propagation process. The vertices’ arrival times are inserted
into a max-heap data structure.

2. Sampling: The algorithm proceeds by extracting the root
from the max-heap. This yields the next farthest point sample in
the form of the input point closest to the root’s grid location. This
sample is inserted into BVD(S) by resetting its arrival time to zero
and propagating a front away from it. The front will continue
propagating until it hits (grid) points featuring lower arrival times
and thus belonging to neighbouring Voronoi regions. The arrival
times of updated grid points are updated correspondingly in the
min-heap using back pointers. New and obsolete Voronoi vertices
are inserted or removed from the max-heap respectively. The
algorithm continues extracting the root from the max-heap until
the sample point budget has been exhausted and/or the refinement
condition has been met. This sampling technique is particularly
easily made adaptive by allowing F(p) to vary with any (positive)
point weights either computed on-the-fly or imported in the form
of pre-computed importance maps.

The refinement condition is formulated in the form of a user-
controlled density condition ρ > 0 which we show in Section 3.4
to bound the distance between sample points. More specifically,
the simplified point set is refined until the next farthest point candi-
date’s distance map value is no longer at least as large as the user
threshold indicating that S has become sufficiently dense (Figure 3).
As an alternative to the selection of a global value for ρ , the den-
sity condition can be formulated as a function of, for example, local
object properties provided ρ > 0 holds true throughout.

As regards the algorithm’s computational and memory effi-
ciency, extracting the root from, inserting into, updating and remov-
ing from the max- and/or min-heap with subsequent re-heapifying
are O(logW1) and O(logW2) operations respectively, where W1 rep-
resents the number of elements in the max-heap and W2 denotes
the number of elements in the min-heap. W1 and W2 are O(N),
N representing the number of grid points in the offset band Ωr

Pn
.

The accessing of existing max- and min-heap entries is O(1) due
to the use of back pointers from the grid to the heaps. The detec-
tion of the Voronoi vertices is a by-product of the O(N logN) front
propagation. This O(N logN) process is performed up to N2 times,
where N2 represents the output size. N2 is O(N) yielding a running

Figure 3: Effect of different values of ρ . The user controls the
maximum distance from the next (red) farthest point candidate to
the sample set S (blue points), i.e. the radius ρ of the largest empty
circle in the domain of the simplified point set. This in turn bounds
interpoint distances.

time of O(N2 logN). It is important to note in this context that N
will generally be relatively small and that the size of W2 decreases
with increasing sample size moving min-heap re-heapifying closer
to O(1) and making the O(N logN) front propagation close to linear
in complexity thereby yielding considerably more favourable run-
time behaviour in practice. This observation is confirmed by the
experimental results reported in Section 4. The algorithm’s mem-
ory requirements are relatively low due to the consideration and
storage of grid points located in the offset band only. The actual
requirements correspondingly vary proportionally with the size of
the offset radius and inversely with the grid spacing.

3.2 Intrinsic point cloud resampling

Fast Marching farthest point sampling of a uniformly distributed
point cloud yields a subsample. If resampling of the point cloud is
required instead, local surface approximation and a corresponding
projection operator are needed. We use a variant of Alexa et al. [1]
MLS method, briefly summarised below, to fit a bivariate polyno-
mial to a local neighbourhood of input points for sample si to be
projected on. Apart from this additional projection operation, steps
1. and 2. of the simplification algorithm remain unchanged.

The MLS procedure involves two weighted least squares compu-
tations, the first of which estimates the normal n of a local support
plane H for si by minimising the weighted distances of the points
in the k nearest neighbourhood, NNsi , of si

minnTUn,

with ||n = 1|| and U = {uvw} ∈ R
3x3 representing a weighted co-

variance matrix

uvw =
k

∑
j=1

θ j(p jv − siv)(p jw − siw),

with p j ∈NNsi and θ j = e−d(p j ,si)2/h2
; d denotes Euclidean distance

and h represents a global scale parameter. The value of h will usu-
ally reflect any prior knowledge of global sampling density such as
the sampling resolution of the device used to acquire the point ge-
ometry. Eigenanalysis of U yields the principal components of NNsi

in the form of orthogonal eigenvectors e1, e2, e3 and corresponding
real eigenvalues λ1, λ2, λ3 spanning a local covariance ellipsoid.
Provided that λ1 ≤ λ2 ≤ λ3, λ1 describes the points’ covariance
along the local surface normal and e1 may be chosen as local nor-
mal estimate [9]. Subsequently, this estimate can be used to move
H closer to the underlying surface. Alternatively, given that the in-
put point set is known to be (close to) noise-free, H passes through
si and any modification of H’s position is not required.
As part of the second weighted least squares computation, the k
nearest neighbours of si are projected onto the support plane H.
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Figure 4: Enhanced k nearest neighbourhood (left) of a (red) point
p. By controlling for violations of a preset maximum angle γ be-
tween successive neighbours, the anisotropic distribution of points
around p is taken into account and interpoint spaces are bridged.
The corresponding standard k nearest neighbourhood is shown on
the right.

Their local 2D coordinates in an orthonormal coordinate system
centred at the projection qi of si onto H are used to fit a bivariate
polynomial to the points in the neighbourhood. The weights used
in the regression now reflect the distance of the points in NNsi to

qi instead of si, i.e. θ j = e−d(p j ,qi)2/h2
. The final location of the

farthest point sample si is then given by the projection of qi onto
the fitted polynomial.

Thus far, we have been assuming that the input point set is uni-
formly dense. The following section addresses the issues arising
from dealing with point clouds of variable density.

3.3 Non-uniformly distributed point clouds

When dropping the assumption of uniformly distributed input point
sets, a number of problems arise. Firstly, continuing to use a
global feature size parameter h for MLS approximation will re-
sult in poorly fitting regressions. Secondly, the radii of the offset
balls, B(pi,ri), pi ∈ P, need to be adjusted to account for local den-
sity variations and undersampled regions, i.e. illegitimate holes.
Finally, it is generally important to note the limited usefulness of
standard k nearest neighbourhoods in this context. In the following,
starting with the discussion of an enhanced k nearest neighbour-
hood concept, we describe our approach towards dealing with these
issues.

3.3.1 Enhanced k nearest neighbourhood

It is well-known that standard k nearest neighbourhoods are ill-
suited for collecting proximity information when dealing with point
sets of variable density [8]. We therefore follow [11] and control for
a maximum angle between successive neighbours around an input
point p to ensure a spherical distribution of neighbours all around
p when determining local proximity (Figure 4).

We compute the enhanced neighbourhood, NNp, for an input
point p, by first growing NNp until it is comprised of a preset min-
imum number of neighbours k. Our experimental results indicate a
choice of 8 ≤ k (≤ 18) for the neighbourhood size to be well-suited
for most cases. We then approximate the local normal vector by
first computing the positive semi-definite weighted covariance ma-
trix C = {cvw} ∈R

3x3, of the points pi ∈ NNp around their centroid
cNNp ,

cvw =
k

∑
j=1

θ j(p jv − cNNp)(p jw − cNNp),

with θ j as in (6) below and cNNp = 1/k∑k
i=1 pi, k = |NNp|. This

definition of cNNp needs to be adapted when dealing with relatively
strongly non-uniformly distributed point sets. In this case, cNNp

may simply be defined as the weighted centroid cNNp = ∑k
i=1 wi pi,

provided wi = θi/∑k
j=1 θ j with θi ≥ 0, for all i [4].

Similar to the MLS technique discussed above, provided the
eigenvalues of C are both sufficiently dissimilar and λ1 ≤ λ2 ≤ λ3
holds, the eigenvector associated with λ1 is taken as estimate of the
local normal vector; otherwise, the approximation is unreliable and
the growing of NNp resumes.

The normal vector estimate is subsequently used to project the pi
into the local support plane. The algorithm determines the 2D co-
ordinates of the pi in a local orthonormal coordinate system across
the plane and centred at p. We transform these coordinates into
polar coordinates and control for the difference in polar angle be-
tween successive neighbours in counter-clockwise order around ori-
gin p. If none of the angles between successive neighbours is found
to be larger than a certain threshold, a valid enhanced k nearest
neighbourhood has been found; otherwise, the algorithm contin-
ues growing the neighbourhood until replacement neighbours have
been found which do not violate the angular threshold. This as-
sumes that we are dealing with a closed manifold. In the case of
manifolds with boundary, border points may be detected as outlined
in Section 3.3.3.

As discussed next, this neighbourhood concept is used both to
replace h by localised weights in the resampling regressions and to
automatically determine offset ball radii in a pre-processing step.

3.3.2 Localised weighting for adaptive MLS approxima-
tion

Using a global scale parameter such as h when processing a non-
uniformly distributed point set will cause poorly fitting regressions
and localised weighting for supporting adaptive MLS approxima-
tion [16] needs to be used instead. To allow for local changes in
point density, our experimental results suggest to set θ j to the fol-
lowing quadratic B-spline B(t) centred at si,

θ j = B

(
3d(p j,si)

2rsi

)
, (6)

with support radius rsi representing the radius of the sphere centred
at si. As illustrated in Figure 5, the sphere contains the input points
p j forming the enhanced k nearest neighbourhood of si.

3.3.3 Automatic determination of offset ball radii and
hole-filling

We compute an adaptive offset band by determining variable offset
ball radii, ri, during the one-off pre-processing step. We start with
establishing adjacency information by computing the enhanced k
nearest neighbourhood, NNp, of the input point p under consider-
ation. Once this local proximity information is available, the algo-
rithm determines the Euclidean distance d between p and its neigh-
bour q ∈ NNp farthest away from p. Provided d(p,q) is larger than
any radius currently associated with p and q, d(p,q) is the new ra-
dius of both the offset balls centred at p and q. The corresponding
grid vertices are included in the band.

This first approach does not pay any attention to the risk of con-
necting different parts of the underlying surface. It may further
bridge legitimate holes on manifolds with boundary. To avoid these
problems, the maximum permissible radius d is bounded locally as
discussed in [12]. If, due to the size of a hole, the algorithm cannot
determine such a value locally, a user-controlled (global) maximum
radius is considered instead. If no spherical neighbourhood can be
detected for this radius either, p either represents a border point or
an undersampled region has been encountered which is too large
to be bridged by NNp subject to the global radius maximum. In
this case, the user is asked interactively to label it either as a bor-
der point or as an illegitimate hole by setting a new (local) radius
maximum.
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Figure 5: Local surface approximation and projection for non-
uniformly distributed points. Sample s j (red) is projected onto a
bivariate polynomial g(xi,yi) locally fit to (blue) points pi ∈ NNsj

weighted by a quadratic B-spline with its parameter scaled by rs j .

Following this pre-processing step, a tubular neighbourhood is
available to the simplification algorithm across undersampled re-
gions. When processing such regions, there do not exist any in-
put points near samples located in parts of the offset band which
bridge illegitimate holes. These holes are filled by our adaptive
MLS-based point cloud resampling technique. During resampling,
a bivariate polynomial is fitted across the hole with the help of the
surrounding input points in the sample’s enhanced k nearest neigh-
bourhood. The sample is then projected onto this polynomial (Fig-
ures 5, 6). Eigenanalysis of the local neighbourhood can be used to
observe local topology more closely as outlined in [9].

Although this approach supports the processing of the type of
moderately non-uniformly distributed point cloud data frequently
observed in practice, it does not allow for the processing of strongly
non-uniformly distributed point clouds or the filling of complex or
sizeable holes. Note in this context that irrespective of the particular
neighbourhood concept used, any such constellation prevents the
meaningful computation of geodesic distances due to the lack of
sufficient information regarding the underlying surface.

3.4 Point set density guarantee

We give a simple guarantee in the spirit of Eldar et al. [7] in terms
of the user-controlled refinement condition ρ on the density of
point sets produced by our simplification algorithm.

Definition 1 As discussed in Section 2.2, the centre of the
largest empty circle coincides at any one stage of the sampling
process with a vertex v of BVD(S). Define rmax as the radius of this
circle at the end of the simplification process, i.e.

rmax = max
s∈S

dM(v,s) = ρ,

where dM(p,q), as defined above (Section 2.1), represents the
geodesic distance between the points p and q on the surface M.
Denote as r j

max, the radius of the largest circle empty of the first
j sample points. Without loss of generality, we assume that 1(a)
below is not violated by the initial set of three sample points.

Theorem 1
(a) For the distance between points si, s j ∈ S, i �= j,

dM(si,s j) ≥ ρ

(b) For any pair of neighbouring points si,s j ∈ S,

dM(si,s j) ≤ 2ρ

Figure 6: Variable offset ball radii and hole-filling. The offset radii
ri are adapted to changes in sample density. Simple holes are filled
by projecting sample s j from its grid location (red) in the bridging
offset band onto the approximated surface (blue curve) generated
by adaptive MLS (Figure 5).

Proof
(a) Note that with increasing sample size, r j

max will not increase,

rmax ≤ r j
max, (7)

for j < n = N. Let si, s j denote two sample points on the geodesic
circle of v with j sampled after i. By the definition of the algorithm,
s j is placed at a vertex with distance r j−1

max = maxs∈S j−1 dM(v,s)
from S j−1. Thus, for any si with i < j, dM(si,s j) ≥ r j−1

max . From (7),

rmax ≤ r j−1
max so that dM(si,s j) ≥ rmax = ρ . �

(b) Consider a Voronoi vertex v shared by two neighbouring
sample points si, s j. By definition, v is equally far away from both
si and s j. Thus, by triangle inequality, dM(si,s j) ≤ 2dM(v,si).
Since dM(v,si) ≤ rmax = ρ , dM(si,s j) ≤ 2ρ . �

4 Experimental results and applications

To highlight the features of our algorithm, we apply our simplifica-
tion algorithm to a number of massive data sets (Figure 7 bottom)
and present results for both uniform and feature-sensitive sub- and
resampling. We also give a hole-filling example and illustrate the
algorithm’s inherent support of level of detail-generation. The sec-
tion concludes with a first set of performance results for a number
of different data sets. Each data set was processed on a 1.0GHz
AMD machine with 1GB of memory.

Figure 9 shows the distributions and surface reconstructions of
the Michelangelo Day and Michelangelo Dawn data sets both uni-
formly subsampled to 1% of their size. The simplified point sets are
irregularly uniformly distributed. This results in cluster- and hole-
free coverage of the domain so that high quality further processing
such as surface reconstruction and its rendering is supported.

We exploit both this favourable distribution property and the
algorithm’s progressive nature to produce levels of detail of the
Michelangelo Youthful data set (Figure 10). This feature can be
utilised for, amongst other things, the progressive transmission of
3D content.

Automatic adaptive offset band generation and uniform resam-
pling are used to deal with holes/non-uniformity in a Buddha data
set acquired using a Minolta VIVID 900 laser range scanner. The
adaptive offset band bridges the relatively simple holes in the ge-
ometry thereby allowing for the upsampling of the local geometry
by projecting samples in the offset band onto local polynomials fit-
ted across the holes. As a result and as illustrated in Figure 11,
despite the irregularity of the acquired point set, a uniformly sim-
plified representation fully supporting any further processing such
as hole-free surface reconstruction is produced.

We estimate local changes in mean curvature by eigenanalysis-
based local surface variation [16] to drive curvature-sensitive sub-
sampling of the Venus model; Figure 8. This is achieved by vary-
ing the speed of front propagation with the curvature estimates.
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Figure 7: Uniform simplification execution efficiency as function
of output (top) and input model size (bottom). For the former, the
Venus data set (134345 points) was simplified to different output
sizes. For the latter, each input model was uniformly subsampled
to 1% of its size.

The point distributions clearly follow local curvature changes de-
spite the rough nature of this estimate. Provided the speed remains
strictly positive throughout, adaptive sampling may be driven by
any other or additional adaptivity measure. Excessive irregularity
of the resulting point set preventing any meaningful further pro-
cessing can be avoided by enforcing a globally rather than locally
defined refinement condition ρ .

Finally, as indicated in figure 7, the algorithm’s efficiency is
only moderately affected by substantial increases in input or out-
put model size. Due to the consideration of offset band grid points
only, only a fraction of the available 1GB of memory was used by
the algorithm at any one point. This is in contrast to grid-based
techniques which discretise a point set’s bounding box at the ex-
pense of prohibitively large memory demands for relatively small
point sets by today’s standards.

5 Conclusion

We present an intrinsic point cloud simplification algorithm with
density guarantee. The algorithm supports efficient uniform and
user-designated feature-sensitive sub- and resampling. It can fur-
ther deal with illegitimate holes of simple complexity and its
coarse-to-fine nature inherently allows for the generation of level-
of-detail multiresolution representations and progressive transmis-
sion of 3D content. The technique put forward in this paper repre-
sents the first point cloud simplification algorithm combining sim-
ple control of guaranteed density with the above set of desirable fea-
tures. We were primarily concerned with presenting the algorithm’s
conceptual framework and showing its viability using a number of
massive data sets. The presentation of detailed experimental and
comparative results including the quantitative analysis of the ap-

proximation error introduced by the algorithm and the generation of
ellipsoidal rather than spherical offset bands is left to future work.
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Figure 8: Purely adaptively subsampled Venus point sets driven by changes in local surface variation estimates (left half) vs. uniformly
resampled Venus point sets (right half). The model’s mean curvature plot is shown in the middle (red - high, yellow - medium,
green - low curvature). From centre out, the point sets correspond to 90.0%, 95.0% and 97.5% simplification.

Figure 9: Examples for the quality of the point distributions generated by our algorithm: The Michelangelo Day (left) and Dawn (right) data
sets uniformly subsampled to 1% of their original size and their corresponding surface reconstructions. (This Figure is best viewed
on-screen).

Figure 10: Levels of detail of the Michelangelo Youthful data set produced from point sets generated by progressive uniform resampling of the
original point cloud to 0.25%, 0.5%, 1.0% and 5.0% of its size (from left to right).

Figure 11: Simple hole-filling example for a Buddha data set acquired using a laser range scanner. Since subsampling of the data set would retain
the holes (left), the point cloud was uniformly resampled to 10.0% of its size instead (right) by computing an adaptive offset band and
subsequent projection of sample points inside that band onto a local surface approximation.
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